SET THEORY HOMEWORK 2

Due Monday, September 30.

Problem 1. In ZF^- prove the Schröder-Bernstein theorem i.e. that if $A \leq B$ and $B \leq A$ implies that $A \approx B$. Hint: Suppose $f : A \rightarrow B$ and $g : B \rightarrow A$ are one-to-one.Set $A_0 = A$,

Hint. Suppose $f: A \to B$ and $g: D \to A$ are one-to-one. Set $A_0 = A$, $B_0 = B, A_{n+1} = g^{"}B_n, B_{n+1} = f^{"}A_n, A_{\infty} = \bigcap_n A_n, B_{\infty} = \bigcap_n B_n$. Let h(x) be f(x) if $x \in A_{\infty} \cup \bigcup_n (A_{2n} \setminus A_{2n+1})$. Otherwise let h(x) be $g^{-1}(x)$. Show that h is well defined and $h: A \to B$ is one-to-one and onto.

Problem 2. Assume CH (but not GCH). Show that for every natural number n > 0, $\omega_n^{\omega} = \omega_n$.

Problem 3. (1) Show that if $\aleph_{\omega} < 2^{\omega}$, then $(\aleph_{\omega})^{\omega} = 2^{\omega}$. (2) Show that $\aleph_{\omega}^{\omega_1} = 2^{\omega_1} \cdot \aleph_{\omega}^{\omega}$.

Problem 4. Suppose that for all n, $2^{\aleph_n} = \aleph_{\omega+1}$. Show that $2^{\aleph_\omega} = \aleph_{\omega+1}$. Hint: For each $A \subset \aleph_\omega$, define $A_n := A \cap \aleph_n$. Consider the map $A \mapsto \langle A_n | n < \omega \rangle$.

Problem 5. Suppose that κ is inaccessible. Show that $|V_{\kappa}| = \kappa$ and $V_{\kappa} \cap ON = \kappa$.